Crumpler's No-Rock" Fabric Wrapped Large Diameter (LDP) Septic Pipe

Crumpler Plastic Pipe, Inc.

Manufacturers of Corrugated Plastic Drainage Pipe
Phone 910-525-4046 / (800) 334-5071
Post Office Box 2068
Roseboro, North Carolina 28382
Web Site: www.cpp-pipe.com

Crumpler's No-Rock ${ }^{\text {TM }}$ Fabric Wrapped Large Diameter (LDP) Septic Pipe

CPP No-Rock ${ }^{\text {TM }}$ LDP Trench Construction Details

TYPE	SIZE	PART NO.	PACKAGE DESCRIPTION	PRICE
	$\begin{gathered} 8 " \\ 10^{\prime \prime} \end{gathered}$	$\begin{aligned} & \text { 0830020B } \\ & \text { 1030020B } \end{aligned}$	CRUMPLER'S NO-ROCK ${ }^{\text {M }}$ SEPTIC - 20 ft . with filter wrap CRUMPLER"S NO-ROCKNM SEPTIC 20 ft . with filter wrap	

Large diameter (LDP) CPP No-Rock ${ }^{\text {TM }}$ septic tank trench systems use a filter wrap that allows for the installation of septic treatment pipes without gravel. The advantage in using CPP NO-ROCK is evident in areas where there is a shortage of inexpensive quality rock or where the shape and topography of a lot hinder the access of heavy construction equipment. Less equipment use means more trees can be saved,
less lot grading is needed, and thus fuel and labor are saved. Additionally, 8" and 10" pipes create reduced On-Center (OC) spacing between more narrow parallel septic trench lines. An 8" pipe will fit into a 10" wide trench and a 10" pipe in a 12" wide trench. This allows for a 5 foot OC spacing for 8 " and a 6 foot OC for 10". Thus lot space is saved for other uses.

- Eliminates Rock	- Saves Fuel
- Saves On Lot Grading	- Increases Lot Value
- Saves Trees On Lot	
- Saves on Installation Labor	

TYPE	SIZE	PART NO.	PACKAGE DESCRIPTION	PRICE
	8"	0830020B	CRUMPLER'S NO-ROCK ${ }^{\text {M }}$ SEPTIC 20 ft . with filter wrap	
	10"	1030020B	CRUMPLER"S NO-ROCK™ SEPTIC - 20 ft . with filter wrap	

Large diameter No-Rock ${ }^{\text {TM }}$ septic tank trench systems were developed as an alternative to 4 " pipe systems in gravel-filled trenches for use in soils that most conventional 4" gravel would be allowed in. Organic Iron Ochre soils, however, are unsuitable For Filter Enclosed No-Rock ${ }^{\text {TM }}$ Septic Pipes. The advantage in using the large diameter systems is evident in areas where there is a shortage of inexpensive quality rock, or where the shape and topography of a lot hinder the access of heavy construction equipment. The use of small trenchers for digging narrow trenches means more trees can be saved, less grading is needed, and thus fuel and labor are saved.

Crumpler's NO-ROCK ${ }^{\text {TM }}$ septic systems include using either an 8 " or a 10 " corrugated HDPE pipe enclosed in a polypropylene filter wrap. ASTM-F-481 septic installation specification should be reviewed prior to installation. Most states allow gravelless large diameter systems to be substituted for conventional systems in ANY SOIL TYPE deemed acceptable for a conventional system with LTAR of 0.8 and under. One should check with local inspectors to determine
if CPP No-Rock approved soils of 0.8 LTAR or under are present on one's property/lot.

Crumpler's No-Rock ${ }^{\text {TM }}$ septic system may be substituted for any conventional 4 " pipe gravel trench system utilizing distribution devices, serial distribution, hillside or stepdowns. However, it should not be substituted for bed systems. It should also be limited to domestic sewage, and not used where there will be large amounts of grease or oil such as in restaurants unless designed by an engineer.

The 8 " size pipe will equal to 2 -foot wide conventional trench; and the 10 " size will equal a 2.5 foot wide trench. To determine the required linear footage of either pipe size, first determine the square footage by dividing the design sewage flow by the appropriate soil's long term application rate. Then divide this total square footage area figure by either 2 feet (for 8 ") or 2.5 feet (for 10 ") to establish the linear footage amount. Per chart below, on center (oc) spacing will be determined by actual trench width.

$$
\begin{array}{ll}
\text { Example: } & \text { A } 3-\mathrm{bedroom} \text { house on a loam soil } \\
& 0.6 \mathrm{gpd} / \mathrm{ft}^{2}=\text { loam soil's long term application rate. } \\
& 3 \mathrm{BR} \times 120 \mathrm{gpd}=360 \mathrm{gpd} \\
& 360 \mathrm{gpd} \div 0.6 \mathrm{gpd} / \mathrm{ft}^{2}=600 \mathrm{ft} \text {. } \\
& 600 \mathrm{ft}^{2} \div 2 \mathrm{ft}=300 \text { linear } \mathrm{ft} \text { of } 8 \text { " or } \\
& 600 \mathrm{ft}^{2} \div 2.5 \mathrm{ft}=240 \text { linear } \mathrm{ft} \text { of } 10 \text { " } \\
& 600 \mathrm{ft}^{2} \div 3 \mathrm{ft}=200 \mathrm{ft} \text { for conventional } 4 \text { " gravel } \\
& \text { SUGGESTED INSTALLATION OF STANDARDS }
\end{array}
$$

Nitrification trench bottom minimum width for 8"....................10"
Nitrification trench bottom minimum width for 10"12"
Nitrification line center spacing on 8"5' oc
Nitrification line center spacing on 10"6' oc
Nitrification trench bottom minimum depth 18"
Nitrification trench bottom maximum depth (24" preferred) 36"
Nitrification trench bottom slope..........................level to 1" per 100 ft
Nitrification line minimum cover .. 6"
Nitrification line maximum cover (12" preferred)............................24"

Native backfill from all approved soil sites should be used and any soil clods should be eliminated. Also, any trench root rubbish or site construction debris should be removed from the trench prior to backfill. The corrugated pipe used shall comply with ASTM-F-667. Also the installer should be careful to note
that the filter wrap is light sensitive, and should not be exposed to sunlight for extended periods of time. The installer should also take care during installation to avoid tearing of the filter material. The protective plastic wrap that protects the filter should be disposed of off site.

Slope Correction Table

NOTE: Add the inches from Slope Table to the MSD ${ }^{1}$ to determine the RSD ${ }^{2}$

PERCENT SLOPE	10" Trench	12" Trench	18" Trench	24" Trench	36" Trench
6	0.6	0.7	1.1	1.4	2.2
12	1.2	1.4	2.2	2.9	4.3
18	1.8	2.2	3.2	4.3	6.5
24	2.4	2.9	4.3	5.8	8.6
30	3	3.6	5.4	7.2	10.8
36	3.6	4.3	6.5	8.6	13.0
42	4.2	5.0	7.6	10.1	15.1
48	4.8	5.8	8.6	11.5	17.3
54	5.4	6.5	9.7	13.0	19.4
60	6	7.2	10.8	14.4	21.6

NOTE: For sloping sites a calcuation of the additional required soil depth is necessary using the table above or the following formula: R RS $=M S D+(T W x . S)$
Where; RSD = Required Soil Depth (inches),
MSD - Min. Soil Depth (Min. Soil Cover + Ht. of Sys. + Min. Separation) (in)
$T W=$ Trench Width (inches), \&
. $S=$ Percent Slope (.00)
Example: Assume site for septic system dispersal field has a slope of 28% and the trench bottom is required to be 12 inches above a site limitation, such as, weathered rock or perched water table. Also, assume that the proposed site has a usable or acceptable soil depth of 38 inches. Further, a minimum soil cover of 6 inches is required over the dispersal system.

Trial 1: Conventional trench (36 inches wide, 12 inches gravel, 6 inches over) would require a usable soil depth of 40 inches. [40 inches RSD - 30 inches MSD + (36 inches TW x .28 S)] Thus, a conventional or 36 inch wide trench is unsuitable at this site.
Trial 2: Crumpler NO ROCK™ 8 inch ID (9.3 in. OD) installed in a 10 inch wide trench would require a usable soil depth of 31.4 inches. [$31.4 \mathrm{RSD}=28$ inches MSD $+(12$ inches TW x .28 S)] Therefore, site is acceptable for Crumpler 8 in. NO ROCK ${ }^{\text {TM }}$.
Trial 3: Crumpler NO ROCK™ 10 inch ID (11.7 in . OD) installed in an 12 inch wide trench would require a usable soil depth of 35 inches. [35 inches RSD $=30$ inches MSD $+(18$ inches TW x .28 S)] Therefore, site is acceptable for Crumpler 10 inch NO ROCK ${ }^{\text {TM }}$.
${ }^{1}$ MSD is the minimum soil depth at 0% slope and is the sum of the min. separation distance between trench bottom and limiting horizon (typ. 12 in), plus the system height, plus the min. soil cover (typ. 6 in.).
${ }^{2}$ RSD is the required soil depth to install a trench on a sloping site with the added inches to meet the minimum separation distance on the uphill side of the trench.

Septic Effluent Disposal Trenches on Sloping Sites (Cross Section View)

Usable Soil Depth (USD)

 So

Hs

Ground Surface
Cover Soil
Height of
Dispersal System
Trench
Sidewall
Trench Boltom Minimum Separation Height (Hs)

Minimum
Soil
Depth
(MSD)
$M S D=H c+H D+H s$
MSD = RSD on Flat Sites
Not To Scale
Sloping ground Surface

Septic Effluent Disposal Trenches on Sloping Sites (Cross Section View)

Not To Scale

Unsuitable Site Factor

Septic Effluent Disposal Trenches on Sloping Stites (Cross Section) Trial No. 1

Site has 28% slope and soil is 38 inches deep
Trial No. 1: Use 36 inch wide conventional trench system
MSD = 6 in + 12 in + 12 in
$=30$ in
RSD $=30$ in plus (36 in $\times 28 \% / 100$) $=40$ in
RSD (40 in) > USD (38 in)
Proposed System Unsuitable for Slope

FIGURE 4

Septic Effluent Disposal Trenches on Sloping Stites (Cross Section) Trial No. 3

Site has 28% slope and soil is 38 inches deep
Trial No. 3: Use CPP 10 inch NO-ROCK ${ }^{\top 1}$ with 12 inch wide trench.
$M S D=6 \mathrm{in}+12 \mathrm{in}+12 \mathrm{in}$ $=30 \mathrm{in}$
RSD $=30$ in plus (18 in x $28 \% / 100$) $=35 \mathrm{in}$
USD (38 in) > RSD (35 in)
Proposed CPP 10 inch NO-ROCK ${ }^{\text {TM }}$
Suitable for Slope

Septic Effluent Disposal Trenches on Sloping Sties (Cross Section) Trial No. 4

Site has 28% slope and soil is 38 inches deep
Trial No. 2: Use CPP 8 inch NO-ROCK ${ }^{\text {TM }}$ with 12 inch wide trench.
MSD = 6 in + $10 \mathrm{in}+12 \mathrm{in}$ $=28 \mathrm{in}$
RSD $=28$ in plus (12 in
$\times 28 \% / 100)=31.4$ in
USD (38 in) > RSD (31.4 in)
Proposed CPP 8 inch NO-ROCKTM Suitable for Slope

Long-Term Acceptance Rate (LTAR) means the rate of effluent absorption by the soil, existing fill, or saprolite in a wastewater system after long-term use. the LTAR, in units of gpd/ft², is assigned based upon soil textural class, structure, consistence, depth, percent of course rock, landscape position, topography, and septic system type. It is used to determine the dispersal field sizing requirements for on-site septic sewage syatems so they can function reliably for years if those systems are properly operated and mantained.

LTAR depends on a number of factors, including soil type, the LTAR of a specific soil at the trench bottom infiltrative surface, the type of onsite system, and the wastewater contents. Soil texture affects LTAR values for conventional septic systems since the loading rate for Group I Soils can be as much as 10 times greater than that of Group IV soils. In most states the loading rates and the LTAR rates are the same. LTAR rates are based on many years of observation and experience with each soil type.
LTAR rates are also affected by the type of septic system installed. For a Conventional pipe and gravel trench or a modified conventional trench, the LTAR is the rate per day that Septic wastewaters can be absorbed through the bottom and sidewall of the trench and the underlying soil horizons. For a Low Pressure pipe system, the LTAR rate is the daily rate that septic wastewater is absorbed through the entire drain field (trenches and the area between them). CPP No-Rock Large Diameter Pipe (LDP) can be installed in soils with loading rate ranges of from $0.1 \mathrm{gpd} / \mathrm{ft}^{2}$ up to $0.8 \mathrm{gpd} / \mathrm{ft}^{2}$.
In the following examples of how LTAR is used to size different septic trench technologies an average wastewater loading rate soil of $0.4 \mathrm{gpd} / \mathrm{ft}^{2}$ has been selected for easy comparison of how much lot footprint space is needed for different trench technologies that would serve a three bedroom house. For septic wastewater discharge requirements most state regulations assign 120 gpd for each bedroom. Thus a three bedroom home would generate 360 gpd of sewage discharge. Therefore, the following basic information would determine the size of each septic trench technology considered.

Example Permit Layout:

Footprint Comparisons

* 3 Bedroom house
* 0.4 LTAR
* 360 Gallos/day flow
* $360 / 0.4=900$
* 900 Square Feet of Nitrification

Trench Bottom

Footprint Comparisons

Typical Conventional Gravel Septic System Cross Section View

* $900 \mathrm{FT}^{2}$ Trench Bottom Needed
* 3 foot wide trench
* $900 / 3=300$ LF of Trench
* 3 lines - 100 Feet Long
* 0.4 LTAR
* 360 Gallons/day flow
* $360 / .4=900$
* 900 Square Feet of Nitrification

Trench Bottom

Typical Chamber Septic System Cross Section in a 36" Trench

Typical EPS Bundle Septic System Cross Section in a 36 " Trench

* 900 FT2 Trench Bottom Needed
* 3 foot wide trench
* 4 FT Equivalent Trench Width
* $900 / 4=225 \mathrm{LF}$ of Trench
* 3 lines - 75 Feet Long

21' $X 75$ ' $=1,575$ SF of construction area
21' X 100 ' $=2,100 \mathrm{SF}$ of construction area if no reduction allowed

* 0.4 LTAR
* 360 Gallons/day flow
* 360 / 4 = 900
* 900 Square Feet of Nitrification

Trench Bottom / $2.5=360$ FT of Trench

CPP-10" LDP No Rock - 4 Lines - 90' Long in a 12" Wide Trench 19.0' Wide X 90' Long = 1,710 Sq Ft of Construction Footprint

CPP-10" LDP No Rock - 3 Lines - 120' Long in a 16" Wide Trench 13.3' Wide X 120' Long = 1,596 Sq Ft of Construction Footprint

CPP-10" LDP No Rock - 4 Lines - 90' Long in a 16" Wide Trench 19.3' Wide X 90' Long = 1,737 Sq Ft of Construction Footprint

CPP-10" LDP No Rock - 3 Lines - 120' Long in a 18" Wide Trench 13.5' Wide $\times 120^{\prime}$ Long $=1,620 \mathrm{Sq} \mathrm{Ft}$ of Construction Footprint

CPP-10" LDP No Rock - 4 Lines - 90' Long in a 18" Wide Trench 19.5' Wide X 90^{\prime} Long $=1,755$ Sq Ft of Construction Footprint

Crumpler's 8" No-Rock ${ }^{\text {TM }}$ Fabric Wrapped Large Diameter (LDP) Septic Pipe Footprint Comparisons

Example Permit Layout:

* 3 Bedroom house
* 0.4 LTAR
* 360 Gallons/day flow
* 360 / $4=900$
* 900 Square Feet of Nitrification

Trench Bottom $/ 2.0=450 \mathrm{Ft}$ of Trench

CPP-8" LDP No Rock - 3 Lines - 150' Long in a 10" Wide Trench 10.83' Wide X 150' Long $=1,625$ Sq Ft of Construction Footprint

CPP-8" LDP No Rock - 4 Lines - 112.5' Long in a 10" Wide Trench 15.83' Wide X 112.5' Long $=1,780.88$ Sq Ft of Construction Footprint

CPP-8" LDP No Rock - 3 Lines - 150' Long in a 12" Wide Trench 11.0' Wide X 150' Long $=1,650$ Sq Ft of Construction Footprint

CPP-8" LDP No Rock - 4 Lines - 112.5' Long in a 12" Wide Trench 16.0 Wide X 112.5' Long = 1,860 Sq Ft of Construction Footprint

CPP-8" LDP No Rock - 3 Lines - 150' Long in a 16" Wide Trench 11.33' Wide x 150' Long $=1,699.5$ Sq Ft of Construction Footprint

CPP-8" LDP No Rock - 4 Lines - 112.5' Long in a 16" Wide Trench 16.33' Wide X 112.5' Long $=1,837.13$ Sq Ft of Construction Footprint

Crumpler Plastic Pipe, Inc. Post Office Box 2068, Roseboro, North Carolina 28382, Phone 910-525-4046

(F

 Crumpler's No-Rock ${ }^{\text {TM }}$ Fabric

 Crumpler's No-Rock ${ }^{\text {TM }}$ Fabric Wrapped Large Diameter (LDP) Septic Pipe

 Wrapped Large Diameter (LDP) Septic Pipe}

Trenching complete, and ready for Side-Wall rake prep sequence. If neded.

Protective plastic bags removed just prior to trench placement.

Protective plastic bags removed from the site for disposal elsewhere.

CPP - Adaptor end cup can fit multiple lead pipe sizes.

D-Box connections to 6FT OC trench spacing.

Pipe flex provides installation ease.

To Spec (HDPE) Corrugated Plastic Pipe Spec as:

ASTM General Construction

CPP-ASTM-F-677 (3" - 24")
CPP-ASTM-F-2306 (12" - 60")
CPP-ASTM-F-2648 (2"-60")

ASTM-F-481
(Installation Spec)

AASHTO Highway Construction CPP-AASHTO-M-252 (3" - 10") CPP-AASHTO-M-294 (12" - 60"

PHONE 910-525-4046 / (800) 334-5071 24 HR. FAX SERVICE (800) CPP-PIPE

WEB SITE: www.cpp-pipe.com

The East Coast's Largest Producer Under One Roof

